Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Fluids Barriers CNS ; 19(1): 46, 2022 Jun 07.
Article in English | MEDLINE | ID: covidwho-1879246

ABSTRACT

BACKGROUND: Knowledge of the entry receptors responsible for SARS-CoV-2 is key to understand the neural transmission and pathogenesis of COVID-19 characterized by a neuroinflammatory scenario. Understanding the brain distribution of angiotensin converting enzyme 2 (ACE2), the primary entry receptor for SARS-CoV-2, remains mixed. Smoking has been shown as a risk factor for COVID-19 severity and it is not clear how smoking exacerbates the neural pathogenesis in smokers. METHODS: Immunohistochemistry, real-time PCR and western blot assays were used to systemically examine the spatial-, cell type- and isoform-specific expression of ACE2 in mouse brain and primary cultured brain cells. Experimental smoking exposure was conducted to evaluate the effect of smoking on brain expression. RESULTS: We observed ubiquitous expression of ACE2 but uneven brain distribution, with high expression in the cerebral microvasculature, medulla oblongata, hypothalamus, subventricular zones, and meninges around medulla oblongata and hypothalamus. Co-staining with cell type-specific markers demonstrates ACE2 is primarily expressed in astrocytes around the microvasculature, medulla oblongata, hypothalamus, ventricular and subventricular zones of cerebral ventricles, and subependymal zones in rhinoceles and rostral migratory streams, radial glial cells in the lateral ventricular zones, tanycytes in the third ventricle, epithelial cells and stroma in the cerebral choroid plexus, as well as cerebral pericytes, but rarely detected in neurons and cerebral endothelial cells. ACE2 expression in astrocytes is further confirmed in primary cultured cells. Furthermore, isoform-specific analysis shows astrocyte ACE2 has the peptidase domain responsible for SARS-CoV-2 entry, indicating astrocytes are indeed vulnerable to SARS-CoV-2 infection. Finally, our data show experimental tobacco smoking and electronic nicotine vaping exposure increase proinflammatory and/or immunomodulatory cytokine IL-1a, IL-6 and IL-5 without significantly affecting ACE2 expression in the brain, suggesting smoking may pre-condition a neuroinflammatory state in the brain. CONCLUSIONS: The present study demonstrates a spatial- and cell type-specific expression of ACE2 in the brain, which might help to understand the acute and lasting post-infection neuropsychological manifestations in COVID-19 patients. Our data highlights a potential role of astrocyte ACE2 in the neural transmission and pathogenesis of COVID-19. This also suggests a pre-conditioned neuroinflammatory and immunocompromised scenario might attribute to exacerbated COVID-19 severity in the smokers.


Subject(s)
COVID-19 , Vaping , Angiotensin-Converting Enzyme 2 , Animals , Astrocytes , Endothelial Cells , Humans , Mice , SARS-CoV-2 , Smoking/adverse effects , Synaptic Transmission , Tobacco Smoking
2.
Int J Mol Sci ; 21(11)2020 May 30.
Article in English | MEDLINE | ID: covidwho-437415

ABSTRACT

The recently discovered novel coronavirus, SARS-CoV-2 (COVID-19 virus), has brought the whole world to standstill with critical challenges, affecting both health and economic sectors worldwide. Although initially, this pandemic was associated with causing severe pulmonary and respiratory disorders, recent case studies reported the association of cerebrovascular-neurological dysfunction in COVID-19 patients, which is also life-threatening. Several SARS-CoV-2 positive case studies have been reported where there are mild or no symptoms of this virus. However, a selection of patients are suffering from large artery ischemic strokes. Although the pathophysiology of the SARS-CoV-2 virus affecting the cerebrovascular system has not been elucidated yet, researchers have identified several pathogenic mechanisms, including a role for the ACE2 receptor. Therefore, it is extremely crucial to identify the risk factors related to the progression and adverse outcome of cerebrovascular-neurological dysfunction in COVID-19 patients. Since many articles have reported the effect of smoking (tobacco and cannabis) and vaping in cerebrovascular and neurological systems, and considering that smokers are more prone to viral and bacterial infection compared to non-smokers, it is high time to explore the probable correlation of smoking in COVID-19 patients. Herein, we have reviewed the possible role of smoking and vaping on cerebrovascular and neurological dysfunction in COVID-19 patients, along with potential pathogenic mechanisms associated with it.


Subject(s)
Cerebrovascular Disorders/epidemiology , Coronavirus Infections/epidemiology , Nervous System Diseases/epidemiology , Pneumonia, Viral/epidemiology , Tobacco Smoking/epidemiology , Vaping/epidemiology , COVID-19 , Humans , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL